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Understanding the brain requires approaches with
different scales of analysis

Psychophysics characterises the relationship between
dhysical (e.g. visual) stimuli & the psychological experience
of them via behaviour

Glives us a range of approaches to measure performance

From this we can derive insights about the visual system

e.g. that discrimination thresholds tend to be a constant proportion
of the reference intensity (VWeber's Law)



More advanced things we can do with psychophysics

Adaptive Procedures
Signal Detection Theory

|s there a sensory threshold?
Signal Detection Theory says no
Remains a useful concept regardless

llustrated with a comparison between behavioural
measurements and the responses of a single neuron



* We need more methods!
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- Method of limits gives rapid threshold estimates

But suffers from errors of habituation/expectation

« Method of Constant Stimuli avoids these errors

But it's slow and needs pre-defined intensity levels

* |s there another way?
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Use our knowledge of perception to increase efficiency

Select the stimulus intensity to present on each trial based
on the responses to prior trials

‘end to be quicker than classical methods as a result

'here are many approaches in this domain - we're going
to look at two of them

Staircase procedures

QUEST



Derives from the Up/Down Method

Dixon & Mood (1948) sought to find the threshold height from
which dropped weights would make gunpowder mixtures explode

Refined by Cornsweet (1962)
Basic approach resembles the Method of Limits

Results In a single intensity value where a desired
berformance level is reached (e.g. 50% ‘yes' responses)

Simplest example: detection threshold
task for luminance patch with a
yes/no procedure




- Start at (e.g.) high intensity and reduce intensity with each ‘yes' until
response changes

Now raise intensity with each 'no’” until it changes to ‘yes’, and so on
* One down/one up: one ‘yes gives a decrease, one 'no’ an Iincrease

- Converges on 50% - take the average of the reversal points for threshold
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But what If we want a different performance level!

e.g. the /5% correct threshold for a 2AFC task

It the criterion to decrease intensity Is more strict, then we
can target a higher performance level

e.g. If two responses are required In a row to
move down, performance will be above chance

Convergence point is v/0.5 for n down/
one up stalrcase

Two down/one up: 70./%
Three down/one up: 79.4%



- [Three correct responses in a row will decrease intensity
* A single incorrect response with increase intensity

- Converges on /9.4% correct: average the reversal points
to estimate threshold (typically 8, often ignore first 2)
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» Quicker than the Method of Constant Stimuili

But still requires quite a few trials to reach threshold,
particularly with interleaved staircases

« Can we do better?



- We know the pattern
that responses usually take
(a psychometric function)

- Can we use this to guide the
choice of intensity on each trial!

»+ QUEST (Quick Estimation) coe e e
takes this approach: places trials Srightness (cd/m?)
near the threshold of a psychometric function with

parameters that depend on an Initial guess plus observer

responses (Watson & Pelli, 1983)

Percent correct




» Input a guess threshold and its standard deviation (your certainty) to build an a
priori distribution of potential threshold values

- Bayesian estimation used to select the most likely threshold estimate as the
intensity for the next trial (based on both initial inputs and responses made
throughout the experiment)

» Very quick to converge & give a final output of the most likely threshold
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- Advantages
Very quick - threshold estimate in 40-50 trials or less
Avoids issues of the Method of Limits (esp. with interleaved staircases)

Can target different points on psychometric function (so we can
measure either PSE or threshold)

» Disadvantages

Rapid drop to threshold can be difficult for observers, particularly
clinical populations or children

Only returns a single performance level - not ideal If both threshold
and PSE are of interest

Method of Constant Stimuli preferable in these circumstances



Stimulus <

Method

Luminance patch

Gabor
etc.

Limits

Adjustment

Task <

Constant Outcome

stimuli

Adaptive
procedures

SDT

detection <

discrimination

performance

yes/no

forced choice
yes/no

forced choice

Reaction times
Percent correct

Thresholds
d and ¢

PSEs
appearance < Matching

Scaling



* Derives from radar operators during
World War ||

Radar antenna direction given by line

Dots trailing this visible only briefly and
could arise from objects In environment,
weather patterns, noise, or enemy aircraft

Upon seeing a dot: should you raise the
alarm or not?




enemy plane!| No

- Conseqguences:

Signal:
s it actually an enemy plane!?

No

| False Alarm

Correct Reject

Decision: | Yeg
Is there an

Hit

Hit: Enemy are engaged and turned away
Miss: Enemy attack their target unscathed
False alarm: Aircraft take off for nothing, fuel wasted, pilots fatigued

Correct rejection: Crew able to rest and fuel i1s not wasted



Signal:
s there a luminance patch!?

Yes No
Decision: Yes Hit False Alarm
s there a
luminance patch?!| No Miss Correct Reject

» Formalised for psychophysics by Green & Swets (1966)

» Easy to transpose this situation into a yes/no decision task, e.g. with
our luminance patch

+ Here we need two types of trials: signal present or absent

Decisions in each case: yes/no for each type of trial



Signal:
s there a tumour?

No

Decision: Yes | False Alarm

s there a
tumour? No Correct Reject

signal+noise noise

» Radiologists examine chest x-rays and

asked “Is a tumour present or
absent!” (Kundel & Nodine, [975)

+ What limits performance and how can
we characterise this!




Increasing external noise —

» Uncertainty on these tasks arises from two types of noise
» External noise: e.g. maging errors, variation in lung tissue

* Internal noise: radiologist uses some neural response to
detect a tumour - these responses are variable

20



Distribution when cmtemon Distribution when
tumour absent tumour present

Probability

0 5 0 5 20 25
Internal response (e.g. firing rate)

- Compare internal response probability of occurrence curves for noise
alone vs. signal+noise trials

» Discriminability of the two possibilities set by separation/breadth of curves

» But decision also requires that we set a criterion value

2



Distribution when cmtemon Distribution when
tumour absent tumour present

Probability

0 5 0 5 20 25
Internal response (e.g. firing rate)

Signal present trials:
- Response above the criterion = hit

- Response below the criterion = miss

22



Distribution when  riterion Distribution when
7 tumour absent : tumour present

Probability

0 5 0 5 20 25
Internal response (e.g. firing rate)

Signal absent trials:
- Response below the criterion = correct rejection

- Response above the criterion = false alarm

23



Distribution when criterion Distribution when
Ttumour absent tumour present
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Signal:
s there a tumour?

Yes No

Decision: Yes Hit
s there a

tumour? No Miss Correct Reject

False Alarm

signal+noise noise

» Sensitivity Is characterised by d' (d prime)

4 = Ms+N ~ HN
O

- d' = z(Hit) - z(FA)
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Early stage tumour [ate stage tumour

Signal: Signal:
s there a tumour? s there a tumour?
Yes No Yes No
Decision: | Yes 0.84 0.50 Decision: | Yes 0.98 0.33
s there a s there a
tumour! | No 0.16 0.50 tumour? No 0.02 0.77

» Early stage tumour: d = z(0.84) - z(0.5) = |
- Late stage tumour: d = z(0.98) - z(0.33) = 2.5
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- [he criterion can also alter performance drastically

e.g. Radiologists may weigh errors differently - one considers
missed diagnoses fatal, another minimises unnecessary procedures

Note there Is no point that completely removes false alarms
without missing many ‘signal present’ trials

Med

Hits = 98% Hits = 849 Hits = 50%
False Alarms = 84% False Alarms = 50% False Alarms = | 6%

27



Decision:
Is there a
tumour?

Signal:

s there a tumour?

Yes No
Yes 0.98 0.84
No 0.02 0.16

Decision:
Is there a
tumour?

Signal:
s there a tumour?
Yes No
Yes | 0.50 0.16
No | 0.50 0.84

* |s there a way to characterise this criterion?

C

_ (z(Hit) + 2(FA))

2

- Negative means many ‘ves' responses; positive means 'no

28



_ -(z(Hrt) + z(FA))

C

P
Me_d.
Hits = 98% Hits = 84% Hits = 50%

False Alarms = 84% False Alarms = 50% False Alarms = 6%

c=-15 c =-05 c=0.5
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- d'Increases along

- one axis
Crrterion

* Bias shifts points
along these constant
d’ functions

Hits

- Allows separation of
the two parameters

0 0.5

False Alarms

* Receiver Operating Characteristic (ROC) curves show
how Hits and False Alarms relate to d and criterion



Kundel & Nodine (1975) asked

|0 radiologists to identify lung
abnormalrties with flashed images

(0.2 sec) or wit

N free viewing

Single flash d' o

Free viewing d’

- around 1.0

around 2.5

Also rated confidence at 4 levels

Notice the shifts in criterion with
confidence for the two conditions

TRUE POSITIVES

Free Search

One Flash

20

60 80

40
FALSE POSITIVES
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VWe can characterise performance using two values
d - sensitivity
C - criterion

Previously we sought to avoid the subjective criterion
through the use of forced choice procedures

SDT allows us to measure It

Through the separation of 'signal present’ and ‘signal absent’ trials

ROC curves allow depiction of the full variation in
berformance when erther sensitivity or criterion changes

32



- How do we reconcile the SDT approach with what we've
been describing thus far?

Much of what we were measuring earlier concerned finding a
threshold point at a given performance level

SDT argues that this ‘threshold’ does not exist
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Hits

False Alarms

Percent correct performance
can be the result of a range of
‘sensitivity’ values, depending on
the criterion of the observer

S0 there Is no ‘threshold
intensity where a stimulus will
always shift from unseen to
seen (Swets, 1961)

34



Perception feels binary but there is unlikely to be a single
intensity at which the unseen/seen transition always occurs

Nonetheless, thresholds do capture a meaningful aspect of
our sensory experience:

Some stimulus values/differences are harder to see than others

Thresholds give us this in meaningful units (brightness, speed, etc.)

f we minimise criterion effects (e.g. with forced choice
brocedures) then we can measure sensitivity more closely

But 1t 1s worth keeping iIn mind that there is likely no ‘neural
correlate’ of a threshold - it's more an explanatory concept
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- We've seen how performance varies with stimulus intensity,
but can we link this with neural activity?

- Newsome, Britten & Movshon (1989) compared
hsychophysics and single-cell recordings in brain region
MT/V5 of macaque monkeys

+ Recall that with forced choice
brocedures we can test
berception In animals as

well as humans

36



/" ,’6
.'/ I’
“ 7 ,'(“. ’
o /o
QO /
t 0 8 [4“
O U.O -
o ........................... '/'. L 1]
= ,
— /
)
8 0.6 - o) /’«{"
Q- P ’ O
ol
— o e
1
E‘ L L4 L] T L2 Ll T ¢ 7 ag LA T T T Tt T I . T A A4 S v . l
0.1 1.0 10 100

Correlation (%)

+ Measure detection thresholds for ‘global motion’
- Random dot kinematograms with varied ‘correlation’ in direction

»  Psychometric function using a 2ZAFC MCS task gives threshold ~6%
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No. of trials

(noise) (signal+noise)
Nul referred L Cells in MT/VS have a preferred

direction direction | | ,
AN / direction of motion and produce more
correlation/= 12.8% . : : : :
spikes with increasing correlation

Use this to construct response distributions
for the preferred vs. opposite (‘null’) direction

20 B correlation = 3.2%
j | |E Ig E g « Use SDT to simulate a 2AFC response:
- N . | | |
’ *  On each trial, take one spike rate from the

] correlation = 0.8% : : : : ,
preferred direction distribution and one

20 T
1 IEEIEI from the null direction
. © 00 »  Highest spike rate gives the ‘decision’

0 100

20 —

4

Spikes per trial
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1.0

0.8

Proportion correct

‘Neurometric' /s

Correlation (%)

function 4
/ » Psychometric
................................ ... :
JENE function
o5
g"(_ ’.cf." S
1.0 10 100

Black dots show the
‘neurometric function’ of a
single MT/V5 neuron

If we take thresholds:
«  Behaviour: ~6% coherence

* Single neuron: ~4% coherence

Here Is a single cell that
responds In a similar fashion
to the monkey’s
behavioural responses

39



15 =

)
I

o
|

No. of neurons

1
0 T TTTT I T T 1T

0.1 0.3 1 3 10 30
Threshold ratio (neuron/behaviour)
< — > o
neuron more sensitive neuron less sensitive

» Compare neuronal and behavioural thresholds
« Some cells are more sensitive, others less sensitive

- Distribution peaks with the same sensitivity as the individual
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Behavioural results show a similar pattern to the responses
of individual neurons to the same stimulus

Extreme view: perception Is derived from a single neuron

But many neurons were more sensitive than the monkey

Why didn't the monkey ‘listen’ to the more sensitive neurons if they
were better at indicating the presence of motion!?

Some pooling of responses must be occurring

More likely that motion derives from a ‘population code),
e.g. select the mean response out of many cells

More evidence for population coding In future (e.g. the Spatial
Vision lecture)

41



- Using our knowledge of psychophysics we can design
more efficient perceptual tests

Staircase and QUEST procedures

» Signal Detection Theory allows separation of sensitivity
from crrterion (which we previously sought to avoid)

Measurement of d"and ¢ with plotting in ROC functions

Calls into question the notion of a threshold (though 1t Is a useful
explanatory concept nonetheless)

* Psychophysical responses can be linked with the sensitivity
of individual neurons (though we likely pool from many)
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* Some background:

SDT overview:Wolfe et al. Sensation & Perception. Ch |.

* Further reading (if Interested / completely confused):

Levitt (1971). Transformed up-down methods in psychoacoustics.

The Journal of the Acoustical Society of America.Vol 49 (Issue 2):
pp46/-477.

Swets (1961). Is there a sensory threshold? Science.Vol |34 (Issue
3473):ppl68-177.

Newsome, Britten & Movshon (1989). Neuronal correlates of a
perceptual decision. Nature.Vol 34 1: pp52-54.
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